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ABSTRACT
This paper presents a theory for rain noise prediction, consolidating discussions of drop impact
on a plate and resulting work on rain noise predictions that is found in the literature.  An objective
of the consolidated theory is a robust engineering model which does not rely on complex
computational techniques or lengthy computer simulation.  The model described is compared to
measured data to establish accuracy and reliability.  

1.0 INTRODUCTION
The increasing prominence of rain noise as an assessable acoustic issue is evidenced by
the publication of International Standard 140-18:2006 Acoustics - Measurement of
sound insulation in buildings and of building elements - Part 18: Laboratory
measurement of sound generated by rainfall on building elements (ISO 140-18) [1] in
2006 as well as the discussion of rain noise in various guidance documents such as
Building Bulletin 93 Acoustic design of schools which was published in the United
Kingdom in 2004, Acoustic performance standards for the priority schools building
programme which was published in the United Kingdom in 2012 and the BREEAM
Education 2008 assessor manual. 

This paper presents a review of theory for rain noise prediction, consolidating
discussions of drop impact on a plate and resulting work on rain noise predictions that
is found in various research papers and texts [2], [3], [4], [5] to present an engineering
model for rain noise prediction which does not rely on complex computational
techniques or lengthy computer simulation.  Section 2.0 begins with a brief over view
of the theory in order to introduce key factors in the model such as the force, and
impedance.  Subsequent subsections provide a more detailed discussion of each of the
identified factors.  The discussion of force includes considerations in both the time and
frequency domains.  Discussion for the other key items is based in the frequency
domain unless otherwise noted.  The resulting rain noise prediction model is compared
to a limited set of measured data in Section 3.0 to assess its accuracy and reliability.  



2.0 THEORY
2.1 Overview
Assumptions and limitations
The focus of this paper is the prediction of rain noise levels in the building acoustics
frequency range, typically 100-5000Hz, although with some consideration the model
could be extended to encompass both lower and higher frequencies.  

The reaction of a plate to a point force is considered initially.  The resulting model
is applied to the impact force of a single water drop on the plate.  For comparison with
measured data, the model is extended to consider rainfall on a roof, as the linear sum of
individual drops.  The predicted level of rain noise is determined as a function of the
vibration velocity of the plate induced by rainfall.  The vibration velocity is presented
as the sum of:

• The resonant vibration velocity.  
Also referred to as the spatial-average or area-averaged velocity, which quantifies
the free or resonant vibrations of a finite plate, generated from reflections of the
wave field at the plate boundaries.   The resonant vibration velocity is analogous to
a reverberant sound pressure field in a room.

• The non-resonant vibration velocity.  
This quantifies the direct bending wave vibrations, also referred to as forced or
bending wave near field vibrations, of the plate which will be considered herein
below the critical frequency.  The non-resonant vibration velocity is analogous to
the direct, radiated sound pressure field from a source in air.

Unless otherwise noted, the plates discussed are assumed to be thin, isotropic and
homogeneous. 

Model outline
A discussion of the vibration response of a plate excited by a point force can be found
in most reference texts ([6], [7], [8], [2]).  The driving-point impedance Zdp of the plate,
by definition, describes the relationship between a point force, acting perpendicular to
the plate, and the resulting velocity of the plate at the driving point:

(1)

Where Fp is the point force (N), vdp is the resultant velocity (m/s) of the plate at the
driving point and Y is the reciprocal of the impedance, termed mobility or admittance.
Re-arranging eqn (1) provides an expression for the velocity of the plate at the driving
point:
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(2)

vdp can be evaluated provided that Fp and Ydp are able to be determined.  Herein,
reference to Z or Y shall refer to the impedance or admittance at the driving point.  The
total sound power radiated from the plate due to the force may be determined from the
plate velocity, by summing the contributions from the resonant and non-resonant
vibration velocities:

Wout,total = Wout,resonant vibration + Wout,non-resonant vibration

The resonant vibration component of the total radiated sound power may be
determined from the average resonant vibration velocity in the plate which can be
estimated from the plate response at the driving point by accounting for the plate
properties, namely it’s mass and damping.  Cremer et al [7] derive an average resonant
vibration velocity by considering the vibration resonances or modes of the plate and
assuming that at least five modes are contained within any frequency interval of
interest, a condition which is more readily satisfied when the wavelength being
considered is small relative to the lateral dimensions of the plate.  From discussions in
Cremer et al [7] it can be shown that:

(3)

Where ω = 2πf is the angular frequency, η is the total loss factor which describes the
damping losses, ρs is the mass per unit area (kg/m2) or surface density of the plate with
density ρ, S is the surface area (m2) of the plate and Win is the sound power input to the
plate from the point force.  Vigran [10] presents the following equation where <v2> can
be used to calculate the sound power generated from the plate’s reverberant vibration
field 

(4)

Where ρ0 and c0 are the density of air and the speed of sound in air respectively and
σ is the radiation efficiency.  The product, ρ0c0 is often referred to as the characteristic
impedance. 

For materials with a relatively high bending stiffness, such as concrete, it is generally
sufficient to consider only the resonant vibration velocity when determining the sound
power generated by a point force.  However, the non-resonant vibration component of
the radiated sound power may be easily determined and it becomes more relevant when
considering light weight plates with relatively lower bending stiffness and relatively
more damping or, in other words, plates with a less significant resonant vibration field.
The non- resonant vibration component of the total radiated sound power may be
evaluated as the power radiated from a point force excitation of (forced) bending waves
on an infinite thin plate as described by Cremer et al [7].  Where the force is centred on
the driving point and the resulting plate vibrations decrease with increasing distance
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away from the driving point, the radiated sound power may be described directly in
terms of the force without explicitly considering the plate velocity:  

(5)

Vigran [10] notes that eqn (5) is valid where the wave number of the bending wave
is much greater than the wave number in air.  In this paper eqn (5) is applied below the
critical frequency.  It is worth noting that eqn (5) does not explicitly include either
impedance or radiation efficiency.  In other words, the sound power radiated from the
bending wave near field effectively depends only on the mass of the panel and the input
force.

The total radiated sound power may be found by summing (4) and (5).
Consolidating eqns (2), (3), (4) and (5) the total radiated sound power may be expressed
as follows:

(6)

Once the total radiated sound power has been determined, the sound intensity level
radiating from the plate or the sound pressure level in a particular room may be
calculated from established theory, as required for evaluation purposes.  From eqn (6)
ω, ρ0, ρs, S and c0 are easily determined.  The remaining factors Fp, Y, η and σ warrant
further consideration and are discussed in more detail below.  In addition, a brief
discussion of ceiling attenuation is also provided.

2.2 Force
The discussion in the proceeding section applies generally to a point force.  Most
commonly, the point force considered in the texts ([6], [7]) is the impact of a hammer
of a standard tapping machine.  Though a tapping machine comprises five hammers it
is sufficient to initially consider the excitation from one hammer drop and to then scale
the result according to the number of hammer drops which occur in one second.
Analogously, for rain noise it is sufficient to initially consider the excitation from a
single rain drop and thereafter scale the result according to the cumulative impact of
many rain drops, or in other words of rainfall, on a plate.  

The impact of a liquid drop, such as a rain drop, hitting a plate has been well
described by Petersson [3], who assumes that a drop is spherical in shape at the start of
its descent and notes that the shape distorts as the drop falls, with the base of the drop
becoming flatter.  When the drop impacts the plate it will be rapidly decelerated until
the forces within the drop exceed the surface tension of the drop causing it to break.
Petersson [3] assumes that water from the broken drop will flow outwards from the
point of the impact.  The force on the plate can be found by the rate of change of
momentum of the drop as it is decelerated during impact and as its downward velocity
is directed radially outwards. 
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Because of the flattened shape of a raindrop at the moment of impact the initial
deceleration phase will be very short.  It is assumed that the second phase, the flow
phase, begins immediately [3].  It is also assumed that the vertical velocity of the drop
as it flows radially outwards is constant and is the same as the velocity at the moment
of impact [3].  The precise shape of a drop at the moment of impact is difficult to
determine in practice.  To develop the analysis various idealised drop shapes are
proposed.  Petersson [3] considers two idealised drop shapes: cylindrical-
hemispherical, and; paraboloidal.  In addition a further idealised, cylindrical drop shape
is considered below.  The drop shapes are shown graphically in Figure 1.

The force from a single drop depends on the size or volume of the drop.  For an
assumed drop shape and a known volume, the radius of the drop may be determined as
may its mass.  If the drop height is known the velocity of a drop may also be
determined.  From the mass and velocity Petersson [3] describes the change in
momentum with time, that is the force, as follows:

(7)

Here, if the deceleration phase, m d__
dt

(v), is assumed negligible then the force can be
determined from the flow phase, described by v d__

dt
(m).  To carry out an assessment

according to eqn (6) the force, F, must be expressed as a function of frequency.
Petersson [3] derives the force function for a given drop shape by first determining a
mass-time function, which describes the decrease in mass over time due to the water
leaving the drop.  A force function with respect to time may then be derived according
to eqn (7).  A Fourier Transform will then provide an expression for the force with
respect to frequency.  For each of the three drop shapes illustrated in Figure 1, the mass-
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time function and resulting force function expressed in terms of frequency are presented
in the sections below.  

Cylindrical drop
The volume (m3) of the initially spherical drop is

(8)

where R is the drop’s radius (m).  Assuming that the volume of the drop remains
constant through any changes in shape and that the radius of an idealized cylindrical
drop is also R, the height of that cylindrical drop is 4R/3.  Assuming further that the
drop velocity during the impact is constant, being equal to the velocity v0 of the drop at
the moment of impact and also assuming that the flow phase of the impact begins
immediately, the mass-time function for the cylindrical drop is

(9)

Where ρw is the density of water.  The resulting force function with respect to time 

can be found from the flow phase change in momentum, m d__
dt

(v) = m′(t)vo.  For the

cylindrical drop shape, the force function is a constant over the time interval of interest: 

(10)

Applying a Fourier Transform 

(11)

to the force function in eqn (10), the force can be expressed in terms of frequency as
follows

(12)
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Cylindrical-hemispherical drop
The mass-time function and force functions in the time and frequency domains for a
cylindrical-hemispherical drop are described by Petersson [3] as follows, with further
details provided in Appendix A.

(13)

Where the height of the cylinder part of the drop, h, is 2R/3.  Eqn (15) describes the
resulting force function with respect to time, found from the change in momentum: 

(14)

Eqn (16) describes the resulting force function with respect to frequency1. 

(15)

Paraboloidal drop
For a paraboloidal drop the mass-time function and force function in the frequency
domain1 are described by Petersson [3] as follows, with further details provided in
Appendix A.

(16)

(17)
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Comparison of drop shapes
A comparison of the three different drop shapes is presented below for a single drop
with a diameter of 5mm and an impact velocity of 7m/s which is consistent with the
characteristics of Heavy rain according to ISO140-18 [1].  The time history of the
impact for each drop shape is shown in Figure 2.  

The initial peak of the force is the same in all cases, ρwπR2v2
o.  The cylindrical drop

has the shortest impact duration, t =  4R___
3vo′

, and its time history is in the form of a step 

function.  The time history of the cylindrical-hemispherical drop is initially the same as
the cylinder shape drop, until the transition to the hemispherical section of the drop,
where the force begins to fall off gradually such that the impact duration is slightly
longer, t =  5R___

3vo
.  The paraboloidal drop shape has a linear decay with time and has the 

longest impact duration, t =  8R___
3vo

.  The consequences of the differing impact duration 

can be seen in Figure 3 which shows the variation in force with respect to frequency.
For all drop shapes the force spectrum is constant in the low frequency region.  .
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The cut-off frequency, below which the force spectrum is constant, is determined by
Petersson [3] as:

(18)

For the current example, the cut-off frequency is approximately 111Hz.  Above the
cut-off frequency, the paraboloidal drop falls away most rapidly with increasing
frequency.  The spectra of the cylindrical and cylindrical-hemispherical drops are very
similar with the cylindrical drop having more pronounced harmonics.  The paraboloidal
drop will be used in subsequent analysis discussed in this paper.

Rainfall types
A discussion of rainfall types is provided in Appendix B.

2.3 Impedance and admittance
A model for the system impedance of a rain drop impacting on a plate should generally
consider the impedance of both the plate and the drop, as described by Hopkins [2]:

(19)
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For plate materials with high impedance, such that Z >> Zdrop, Zdrop has little
influence on Zsystems and the model can often be simplified by ignoring it.   Drop
impedance becomes more significant for light weight plates such as plywood which
have a relatively low impedance when compared with, for example, concrete.  

Drop impedance
Petersson [3] describes the impedance of a rain drop as follows 

(20)

Where the drop impedance is significant, the resulting driving point velocity of the
plate will decrease.

Infinite plate impedance
The driving point impedance of an infinite, homogeneous, isotropic plate for the
excitation of bending waves has been described by Hopkins [2] as:

(21)

Hassan [9] notes that eqn (21) is valid for thin plates, such that the thickness is
smaller than a sixth of the bending wavelength.  Expressed as mobility it may be
written:

(22)

In the above, B is the bending stiffness of the thin plate, which Hopkins [2] describes
as:

(23)

where E is Youngs Modulus (Pa), h is the plate thickness (m) and ν is Poisson’s ratio,
which is approximately 0.3 for most roofing materials.  It can be observed from eqns
(21) and (22) that the impedance/admittance for an infinite plate is real and is
independent of frequency.  

An alternative expression for the admittance can be derived as a function of the
longitudinal wave speed.  Where longitudinal wave speed, cL is estimated by Cremer et
al [7] as:

(24) 

combining eqn (23) and (24) the following equation can be determined:
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(25)

Eqn (25) allows calculation of admittance for an infinite plate using the plate’s
thickness and the plate material’s longitudinal wave speed.  This is often helpful as the
longitudinal wave speed for many materials is available in the literature and it would
avoid having to directly consider the Youngs Modulus.  However, the assumptions used
to derive eqn (25), namely that the plate is thin and infinite, mean it tends to be less
accurate at extremes of the frequency range.

Finite plate impedance
The infinite plate equations discussed above provide a good approximation for a finite
plate where the wavelength being considered is very small relative to the width and
length of the plate.  In fact, the impedance equation for an infinite thin plate, eqn (22),
also represents the average or mean impedance of a finite plate, when averaged over all
input points and over the frequency band of interest [10].

However, for a finite plate, such as would be used in a rain noise measurement, the
admittance will be influenced by the modal response of the plate, particularly in the mid
and low frequency regions, such that the average response will not be sufficiently
representative of the modal peaks.  Also, the low frequency impedance of light weight
test panels is likely to be controlled by the joists of the support frame rather than the test
panel itself [11].  

For simplicity the current analysis assumes impedance behaviour of an infinite plate.
This assumption will lead to relatively greater prediction errors at low frequencies 

Orthotropic panels
As noted, the discussion of driving point impedance is valid for isotropic materials.  A
need can often arise to consider orthotropic plates, for example roofing materials such
as corrugated iron, which can have significantly different bending stiffness parallel and
perpendicular to the corrugations.  Orthotropic plates can often be approximated by an
isotropic plate by considering the effective bending stiffness  of the plate, as described
by Hopkins [2]:

(26)

Where Bx and By are the bending stiffness in the x and y (orthogonal) directions
respectively.  

For simplicity, the analysis in this paper assumes isotropic panels for all plates
considered.

Surface impact 
The analysis detailed in this paper assumes that each drop impacts directly onto the test
plate.  In practise, after a brief period of constant rainfall the test plate will be covered
with a thin layer of water meaning that subsequent drops will impact on the water layer
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rather than directly onto the test plate.  Petersson [3] notes that where a drop impacts
on a wet surface the impact peak is reduced and the pulse duration is extended.  The
frequency characteristics of the force are therefore diminished at high frequencies.  This
is a cause of uncertainty in the prediction model.

2.4 Damping
The damping term, η, in eqn (6) is the total loss factor which represents all energy
losses from the plate which balance the input vibration velocity and result in the given
resonant vibration velocity for the plate.  These losses can be due to a number of causes
including internal losses within the plate due to conversion of vibration energy to heat
[2], edge losses at the plate perimeter as the vibration energy is transferred to a
surrounding structure and losses due to sound radiation into the surrounding air.
Considering these factors separately the total loss factor can be expressed as

(27)

Each component of the total loss factor is considered below.

Radiation losses
In most cases, energy losses due to radiation are so small that they may be neglected.
However, this is not universally the case.  Losses due to radiation are described by Craik
[8] using a statistical energy analysis (SEA) approach and can be expressed as follows

(28)

At frequencies below the critical frequency the radiation efficiency is typically so
small as to render the radiation damping negligible.  Similarly at frequencies above the
critical frequency, where σ ≈ 1, the frequency component in the denominator of eqn
(28) will often render the radiation damping negligible.  However, in some cases the
radiation damping in the region of the critical frequency, where σ > 1 and f is
sufficiently small, can be significant and is therefore worth considering as part of the
total loss factor.  In eqn (28) the value of σ relates to radiation from one side of the plate
only.  To estimate the radiation losses due to radiation from both sides for the plate, the
fraction on the right hand side of eqn (28) should be multiplied by 2. 

Flanking losses
Flanking losses, that is losses at the edge of the test plate where energy is transferred to
the surrounding structure, will vary depending on the properties of the test plate and
those of the surrounding structure.  EN 12354-1 [12] describes an expression for the
total loss factor which includes consideration of flanking losses in a laboratory situation
where the surrounding structure is relatively massive.  Equation (C.5) of [12] states: 
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(29)

Where ηint is the internal damping, as discussed below.  While the laboratory setting
is rather particular, the total loss factor in eqn (29) provides reasonable prediction
accuracy for more general predictions of field settings.  In particular it provides a
simple and concise expression for the total loss factor, which includes a dependence on
frequency.  The expression does not explicitly consider radiation losses, though this can
be included via the discussions above.

Internal losses
Internal losses account for energy losses due to internal friction.  They are also often
assumed to account for any other sources of energy loss which have not been explicitly
considered in the prediction model.  Typically internal losses are assumed to be
independent of frequency.  Example values are presented in Table 1, sourced from
Hopkins [2].

Table 1. Indicative values for damping

Material Internal damping

Concrete 0.005
Plywood 0.016
Steel ≤ 0.0001

Hopkins [2] notes that the assumption of a frequency independent internal loss factor
is reasonable for solid, homogeneous materials for the building acoustics frequency
range but that some materials can exhibit frequency dependent damping, in particular
with damping which increases with increasing frequency such as laminated glazing.
Our subsequent analysis in this paper will assume a frequency independent internal loss
factor, and the uncertainty associated with this should be noted.

Comments
The rain prediction model presented herein is reasonably sensitive to changes in
damping.  As shown in eqn (6) the resonant vibration velocity component of the total
radiated sound power is directly proportional to 1/η.  Where the resonant vibration
velocity dominates the total radiated sound power, as typically occurs for rain noise, a
doubling of the damping will decrease the radiated sound power by a half (a 3dB
decrease in sound power level).

2.5 Radiation Efficiency
In eqn (6) the radiation efficiency is incorporated into the resonant vibration velocity
component of the total radiated sound power.  For a finite plate with a given resonant
vibration velocity, expressions for the average radiation efficiency for a simply
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supported plate have been derived by Maidanik [13] and are well described in most
reference texts [6], [8], [2].  

For light weight plates which are supported by joists, there may be some reduction
in vibration velocity at each junction with a joist meaning that the vibration in the plate
is not well described by the idealized resonant vibration velocity which is assumed to
be constant over the entire plate.  This variation in velocity may effect the resulting
predictions of radiation efficiency which, for a finite plate, necessarily consider the
plate dimensions and assume an average velocity over the entire plate.  This is a cause
of uncertainty in the prediction model.

It can also be observed that the non-resonant vibration velocity component of
radiated power, eqn (5) does not explicitly include a radiation efficiency term.  

2.6 Ceiling Effects
Eqn (6) may be used to determine the sound power radiated from a single plate.   Theory
developed by Sharp [14] may be used to examine the effects of installing a ceiling
beneath the plate.  It is advantageous to consider the airborne and structure born paths
through the ceiling separately. 

Airborne path
Sharp [14] describes a model for transmission loss through a double panel partition
where the two panels are separated by a cavity which is without structural connections
but includes some sound absorptive material.  Sharp’s model is developed from
consideration of infinite, thin panels such that the panel lateral dimensions are much
greater than the bending wavelengths being considered.  Concurrently, it is assumed
that any standing waves in the air cavity are sufficiently damped by the sound
absorptive material such that the air contained in the cavity acts as a stiffness element.
Equation (6) from Sharp’s paper details a relationship between the transmission loss
(based on the mass law) of the elements and the transmission loss of the overall
partition, as follows:

(30)

Where TLm1
and TLm2

are the mass law transmission losses of the first and second
panels of the partition respectively, M = m1 + m2 and d is the separation between the
two panels (m). f1 is equal to 55/d and f0 is the mass-air-mass resonance of the panel-
cavity-panel system and is given by 113/����med where Sharp describes me as follows:

(31)

To estimate the effect of a ceiling suspended below a roof, we can re-arrange Sharps
equation, calculating TL – TLm1

to determine the influence of the air cavity and ceiling
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panel.  Applying this effect to the sound power level radiated from the roof, 
Lw,out,total = 10log10(__Wout,total_____

wref    ), we get an expression for the sound power level radiated
from the ceiling:

(32)

Where, and .

In the very low frequency region it may be assumed that the roof/ceiling system
behaves as a lumped mass.  Accordingly, ∆TLM is the difference between the mass law
transmission loss of the first panel TLm1

and the combined mass law transmission loss
TLM of the test plate and the ceiling when treated as an equivalent single plate such that:

(33)

Structure borne path
Where there are structural connections between the test plate and the ceiling, as can
regularly occur in practice due to the presence of joists and wire hangers in a
roof/ceiling installation, the connections will reduce the transmission loss gains
described above.  Assuming that the ceiling lining is sufficiently damped for the effect
of the structural connection to be controlled by non-resonant radiation, Cremer et al [7]
provide an expression for the radiated sound power due to line connections:

(34)

Where n is the number of line connections, of length l (m) and λc = c0/fc is the
wavelength at the critical frequency of the ceiling lining. <vConnection

2> is the non-
resonant vibration velocity of the ceiling panel at the line connection.

Where v is the vibration velocity of the test plate (roof) and vbridge is the vibration
velocity of the structural connection, Sharp [14] provides as expression for the force
induced in the structural connection from the test plate:

(35)

Where Z1 is the impedance of the roof plate as seen by the line connection.  Where
vCeiling is the velocity of the ceiling without the contribution of vConnection, the force
induced in the bridge can similarly be described as:
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(36)

Where Z2 is the impedance of the ceiling plate as seen by the line connection.  If it
is assumed that the structural connection is rigid and massless, that vConnection = vbridge

and vbridge >> vCeiling then the following relationship between v and vConnection may be
derived, as detailed by Equation (16) of Sharp’s paper:

(37)

Where the line connection impedances (Z1, Z2) can be determined from 
Z = 2(1 + j)ρSc0���f/fc. Eqn (34) and eqn (37) can be rearranged to provide the following
expression for the sound power radiated from the structural connections:

(38)

An adjustment of WCeiling,structure may be made for frequencies below f0, as outlined
for the airborne case above, in order to account for the combined mass of the roof and
ceiling plates in the very low frequency region.

The combined effect of airborne and structure borne paths through the ceiling may
be determined as:

(39)

3.0 MEASUREMENTS
3.1 Measurement arrangements
The results of a small series of measurements of artificial rain noise are presented
herein.  The measurements were carried out in 1993 but were not published at that time.
As the measurements were carried out prior to the release of ISO140-18, the
characteristics of the artificial rain generated differ from the standard.  Details of the
measurement arrangements are outlined below.  

A small rig, shown schematically in Figure 4, was constructed to generate rain drops
with known characteristics and to enable the acoustical response of test roofs to be
measured accurately.

A one square metre test roof and frame were placed on a simple stand to permit easy
access to the underside of the roof.  The stand was designed to give a 5° pitch to the
roof and a simple gutter on one side collected the water and directed it into a bucket.
The roof frame sat on a 10 mm thick pad of foam plastic to prevent vibration being
transmitted into the stand.

236 A Consolidated Theory for Predicting Rain Noise



Rain was simulated with constant sized drops from an array of 36 irrigation nozzles.
Water from an ordinary domestic tap was supplied to the rain maker via a flow meter.
This allowed precise control of the water flow to the rain maker and rapid adjustment
to the required rain fall rates.  The drop diameter was determined by measuring the
volume of a known number of drops through one nozzle and assuming that all drops are
of equal volume.  

The drops had an equivalent diameter (for a spherical drop shape) of 5.8 ± 0.3 mm
at 30 mm/hr rain fall. The mean drop diameter increased slightly with flow rate.
Individual nozzles in the array were adjusted so that the flow rates were within ± 20%
of the mean.  At the maximum flow rate of 70 l/hr, equivalent to a 70mm/hour rainfall
rate for the 1m2 test plates, there were about 5 drops per second from each nozzle and
190 drops per second from the overall array. The drops fell a height of 6.0 m to hit the
test roof.

The noise generated by the impact of the rain drops was measured by scanning the
underside of the roof with a sound intensity probe.  The intensity was measured in 1/3
octave bands from 100Hz to 5kHz.

Each roof material was fixed in accordance with normal practice to a roof frame
consisting of 150 mm x 50 mm timber joists at 500 mm centres. The rain maker was
adjusted to give the required rainfall rate.  As noted in Appendix B, the rainfall in this
apparatus does not necessarily represent natural rainfall of the same rate since the
raindrops are all of one specific size, whereas in natural rain the drops would be
distributed over a range of sizes and would be travelling at different velocities
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depending on size.  Ballagh [4] notes that a large proportion of drops in natural rainfall
are small and do not contribute significantly to the noise.  Comparing our results with
Dubout’s [15] measurements of natural rain fall on comparable roof constructions, the
noise generated from the 70mm/hr artificial rain, comprising approximately uniform
large drops, is much higher than a natural rainfall of 70mm/hr and is estimated
equivalent to a natural rainfall of approximately 300mm/hr.

Initial tests were conducted to determine the performance of the system using a bare
corrugated steel roof.  The average sound intensity was measured at various flow rates
from 10mm/hr to 70mm/hr.  As expected the noise level increased by about 10 dB per
10 fold increase in rainfall rate.  Note that with natural rainfall the noise will increase
by 17 dB per 10 fold increase in rainfall rate because the proportion of larger drops
which have a higher terminal velocity increases at higher rainfalls [4].  Subsequent tests
on other roofs used only the maximum flow rate of 70mm/hr.

As well as the sound intensity measurements on each roof type, the damping of each
roofing material was measured while the material was mounted on the frame.  An
accelerometer was placed at several different positions on the roof and the roof
structurally excited with a light tap from a hammer. The decay of vibration energy was
recorded and the decay rate and damping coefficients were calculated in 1/3 octave
bands between 100Hz and 5kHz according the equation B.1 of ISO140-18.

3.2 Results
Five different roofing materials were tested.  These are described below and shown in
Figure 13 in Appendix C.

1. Corrugated steel 0.55 mm thick with a factory applied paint finish (Custom Orb)
2. Corrugated fibre cement, 7 mm thick (Hardies Super Six)
3. Trough section steel, 0.5 mm thick with a factory applied paint finish. (Dimondek

400).
4. Corrugated glassfibre reinforced plastic, 1.5 mm thick (Glasslite)
5. Plywood (17.5 mm thick) with 1 mm thick Butynol membrane adhered to the top

surface.

In addition one test was carried out on the Plywood roof with a 13 mm thick
plasterboard lining nailed to the underside of the roof frame.  A blanket of 100 mm thick
wool (9kg/m3) was placed in the joist cavity for this test.

The sound intensity levels for each roof material, at an artificial rainfall rate of
70mm/hr, are given in Figure 5.  The noisiest roof was the trough section steel with the
corrugated plastic roof only slightly quieter.  The Fibre Cement roof was the quietest
with the Plywood and Butynol roof somewhat noisier.  The corrugated steel was
intermediate between these.

The measured damping coefficients as a function of frequency are shown in Figure
6.  These are measured with the roofing materials fixed to the roof frame.  The plywood
and butynol roof was the most heavily damped with the corrugated plastic and
corrugated fibre cement sheet slightly less damped. The trough section steel was
considerably less damped than all other materials.
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The measured damping values range from approximately 0.001 to 0.1 depending on
material and frequency.  Given that the resonant vibration component of the radiated
sound power level is proportional to 1/η, this range of damping values corresponds to
a variation of 102 or, in decibel terms, a variation in sound power level of 20dB.  Given
the difficulties in establishing the actual damping of a particular installation, and the
variation that is likely to occur from test sample to test sample, the damping is a
significant source of uncertainty for the prediction model.

Figure 7 through Figure 11 present a comparison of the measured sound intensity for
each roof with two sets of predicted results based on eqn (6).  One set of predictions is
entirely theoretical, denoted ‘predicted’, while the other incorporates the measured
damping levels in lieu of the theoretical total loss factor outlined earlier.

The overall agreement between measured and predicted sound intensity levels is
reasonable, although there can be significant variations at some 1/3 octave bands.
There is an observable trend that the measured values are greater than predicted values
in the high frequency region, above 500-1000Hz.  This may be due to several factors:

• Force uncertainty, in particular the assumed drop shape may not be sufficiently
representative nor may be the assumption that the drops are falling on a dry surface.
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Figure 5. Measured sound intensity levels for artificial rainfall, 70mm/hr



• Impedance uncertainty, specifically the model for impedance of an infinite plate
may not be sufficiently representative.

• Uncertainty associated with the critical frequency of the materials.  In particular,
the predictions assume the plate material is thin, homogeneous and isotropic.  In
practice several of the materials are profiled (corrugated, troughed) and this is
likely to introduce a double critical frequency trend including at least one critical
frequency which is below that of the equivalent flat plate.

It can also be observed that the predictions based on measured damping generally
are in better agreement with measured sound intensity levels.  
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Figure 6. Measured damping levels 
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Figure 7. Measured sound intensity levels, Corrugated steel 

Figure 8. Measured sound intensity levels, Corrugated fibre cement
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Figure 9. Measured sound intensity levels, trough section steel 

Figure 10. Measured sound intensity levels, Corrugated glass lite



The reduction in noise when the plasterboard ceiling was fixed to the underside of
the plywood test plate and frame is shown in Figure 12.  It can be seen that there is again
reasonable agreement between measured and predicted sound intensity levels.  
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Figure 11. Measured sound intensity levels, Plywood

Figure 12. Measured sound intensity levels, Plywood + GIB



A summary of the measured and predicted A-weighted sound intensity levels is
presented in Table 2.

Table 2. Comparison of measured and predicted levels of rain noise

A-weighted sound intensity level (dB re 10-12 watts/m2)

Construction Measured Predicted Predicted, using 
measured 

damping loss 

Corrugated steel 75 68 68
Fibre cement 64 64 66
Dimond 84 68 73
Glasslite 81 73 73
Plywood + Butynol 73 66 66
Plywood + Gib + Wool 57 57 54

4.0 CONCLUSION
A theory for rain noise prediction has been presented, based on consideration of the
force of one drop on a plate with extension to multiple drops, or rainfall, on a roof.  The
presented theory provides a reasonably robust engineering model which does not rely
on expensive computational techniques or lengthy computer simulation.  Comparisons
with measured data show reasonable agreement with predicted levels and several
possible causes for discrepancies are nominated.  Exploring these possible causes
would be the next step in any further works. 
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APPENDIX A

DROP MASS-TIME FUNCTIONS
Cylindrical-hemispherical drop
Petersson [3] determines the following mass-time function equations for a cylindrical-
hemispherical drop:

Eqn (13) can be derived by calculating the integral and approximating the drop
velocity y(t) by v0, the initial velocity of the drop at the moment of impact. 

Paraboloidal drop
Suga and Tachibana [16] provide an equation for a parabola from which the
paraboloidal drop shape can be determined:
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The mass-time function can then be described as:

Eqn (16) can be derived by calculating the integral and approximating the drop
velocity y(t) by v0, the initial velocity of the drop, at the moment of impact. 

APPENDIX B

TYPES OF RAINFALL
Natural rainfall comprises a range of drop sizes with a range of drop velocities [17].
This range of drop sizes can be estimated by a statistical distribution as explained
below.  Prior to this, however, it is worth considering a scenario intermediate between
the analysis of one drop, as described above, and analysis of Natural rain.  That is
artificial rain, as described in ISO140-18, which explains a measurement procedure
based on rainfall with a constant drop velocity.

ISO 140-18 rain types
Measurements carried out according to ISO140-18 [1] require the use of artificial rain
of a known rainfall rate with drops which are approximately constant in size and which
fall from a known height above a test plate.  The use of a force function comprising a
known, constant drop size of a known velocity and a known number of drops means the
measurements are more readily reproducible.  ISO140-18 describes two different
intensities of artificial rain for measurements, with distinct drop sizes and drop
velocities as detailed in Table 3.

Table 3. ISO140-18 rainfall types

Type Rainfall rate Typical drop Fall velocity 
(mm/hr) diameter (mm) (m/s)

Intense 15 2 4
Heavy 40 5 7

To predict the level of rain noise generated by one of the types of artificial rain it is
necessary to determine the level of noise generated by one drop of the artificial rain, and
then to scale this value by the number of drops per second.  The artificial rain is
typically generated from a header tank positioned above the test plate, whose base has
been perforated with holes sufficient to produce drops of the required size.  The portion
of the base that is perforated has an area of approximately 1.6m2.  
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Considering heavy artificial rain, for example, with a rainfall rate of 40mm/hr the
corresponding rainfall rate per second is 

To calculate the volume of water which therefore falls from the 1.6m2 header tank in
one second it is necessary to correct for the area of the perforated based of the tank.  The
volume of water falling on the test plate in one second is 

The number of drops which fall onto the test plate in one second can be found by
dividing this volume of water by the volume of a single drop.  Where the drop diameter
is 5mm, the volume of the initially spherical drop is

Correcting for units this equates to approximately 276 drops per second falling on
the plate during artificial heavy rain.  Assuming that the drops are incoherent, the force
function for this type of rain can therefore be determined by calculating the force from
a single drop of radius 5mm and drop velocity 7m/s and scaling the magnitude of the
force by a factor of 276 to account for the number of drops per second.

Natural rainfall
Natural rainfall comprises a range of drop sizes.  Any given drop will have a particular
mass and an associated impact velocity, which can be taken as the terminal velocity of
that drop.  A prediction model for noise from natural rainfall must address the range of
drop sizes, and associated impact velocities and forces, which are likely to occur.  The
distribution of drop sizes in natural rain can be estimated by an idealized exponential
distribution, the Marshall-Palmer distribution [17].  Such a model assumes a degree of
temporal and spatial averaging of the natural rainfall.  The Marshall-Palmer distribution
takes the form

(40)

where D is the diameter, NDδD is the number of drops in unit volume of space with a
drop size in the range D-(D + δD) and N0 is the value of ND for D = 0.  Marshall and
Palmer give the values of parameters as N0 = 8000m3mm-1 and Λ = 4.1R-0.21 mm-1,
where R is the rainfall in mm/hr.

To use the Marshall-Palmer distribution in practice it is helpful to break up a range
of drop sizes into discrete intervals.  For example, if a range of drop sizes from 0mm
to, say, 6mm is considered, this range can be divided into intervals of, say, 0.1mm.
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Consider the interval 5-5.1mm.  The Marshall-Palmer distribution will estimate the
number of drops within this interval which falls in unit volume of space.  The terminal
velocity of the drop range may then be determined by a simple empirical formula for
the terminal velocity of raindrops in still air as detailed by Best [18]:

(41)

where vT is the terminal velocity in m/s.
Once the terminal velocity is calculated it may be combined with the drop size and

number of drops to determine the total sound power level radiated from drops in the
range 5-5.1mm.  This process may be repeated for all other intervals and the results
summed to arrive at the total radiated sound power level for the estimated natural rain. 

APPENDIX C

TESTED ROOFING MATERIALS
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Figure 13. Tested Roofing materials


