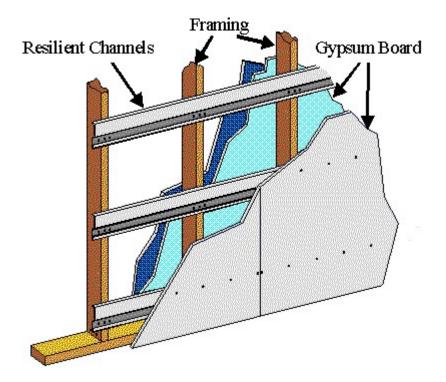
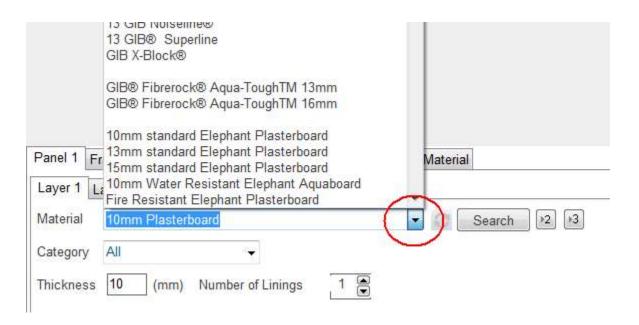
INSUL Prediction Software

A Short Course for Knauf Insulation Keith Ballagh

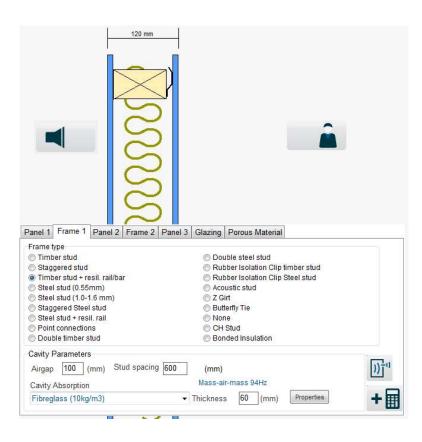


A Quick Introduction

• Predicting performance of a stud wall

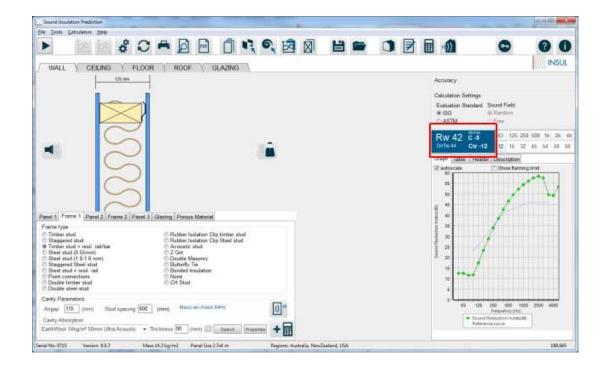

A Quick Introduction

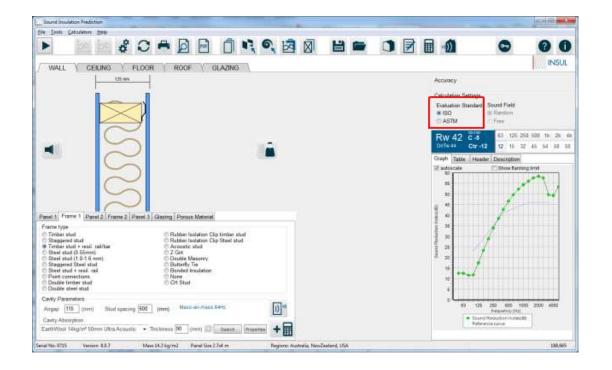
WALI	CEILING FLOOR ROOF GLAZING
Panel 1 F	Frame 1 Panel 2 Frame 2 Panel 3 Glazing Porous Material
Layer 1 L	aver 2 Layer 3 Layer 4 Layer 5 Layer 6
Material	10mm Plasterboard 👻 🔘 Search 😢 🕅
Category	All
Thickness	10 (mm) Number of Linings
	Material Properties Materials List Editor



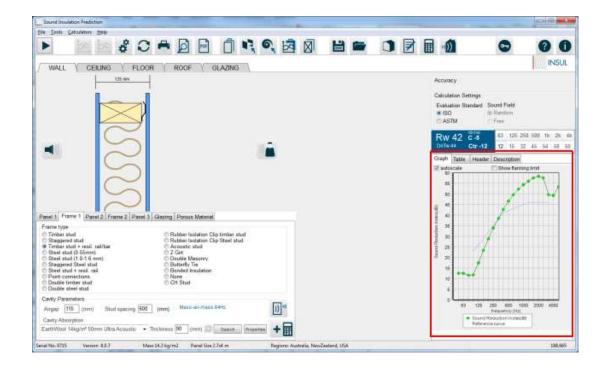
Select materials

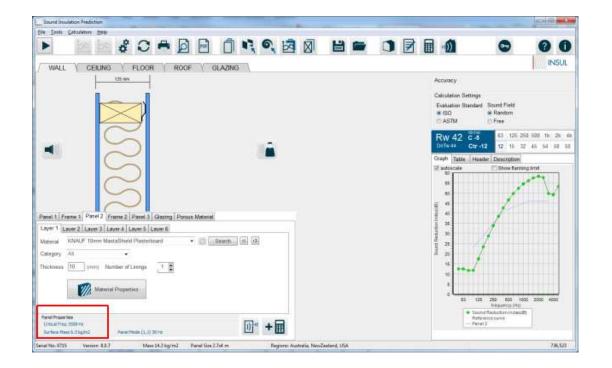
Select Frame/Connections

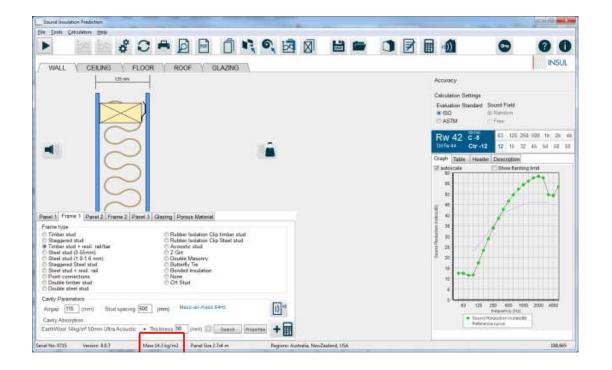



Panel 2

anel 1 Fra	ame 1 Panel 2 Frame 2 Panel 3 Glazing Porous Material
Vaterial	ayer 2 Layer 3 Layer 4 Layer 5 Layer 6 10mm Plasterboard
Category Thickness	All • 10 (mm) Number of Linings 1 •
	Material Properties Materials List Editor







In more detail

- Panels, Layers and Linings
- Frame (connections)
- Cavity Absorption
- Settings, Saving, Printing

Selecting materials

Choose from drop down box, or

Material

KNAUF 13mm ImpactShield ECO Plasterboard

• Type in first letters ('Knau'), or

Narrow down selection by

- Filter list by Category
- Searching by text string eg

(Reset after Searching)

earch Stri	ing	
Enter text	:)	
Mast		

Layers

You can set the number of linings for a given material. Number of Linings

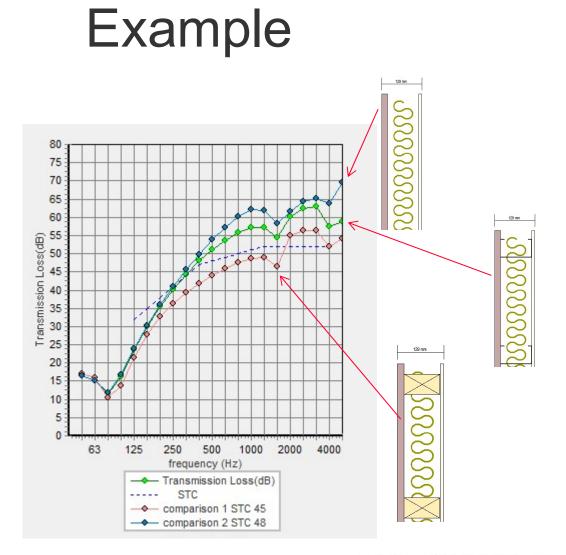
(Note 2 layers of 13mm gypsum board is not the same as 1 layer of 26mm gypsum board)

 If you have different materials fixed to a stud you use "layers" [max of 6]

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

 If your wall is symmetrical you can use the B buttons to transfer your build-up to panel 2 or panel 3.
 MARSHALL D

Frame type (connections)


- Most practical double or triple panel walls have a structural or other connection between sides.
- The connection is a very important path at mid and high frequencies
- INSUL has pre-defined connection types and you must choose the closest type to your construction

Connections

- Timber stud = line connection (worst case)
- Double stud (timber or steel) and none = no connection at all (no path except the air cavity) best case
- Other types are intermediate and all have a defined attenuation (not editable at this stage)
- Read help file for guidance

Equivalents

PAC International RSIC / ST001 clip

Pliteq Genie clip

Kinetics IsoMax clip

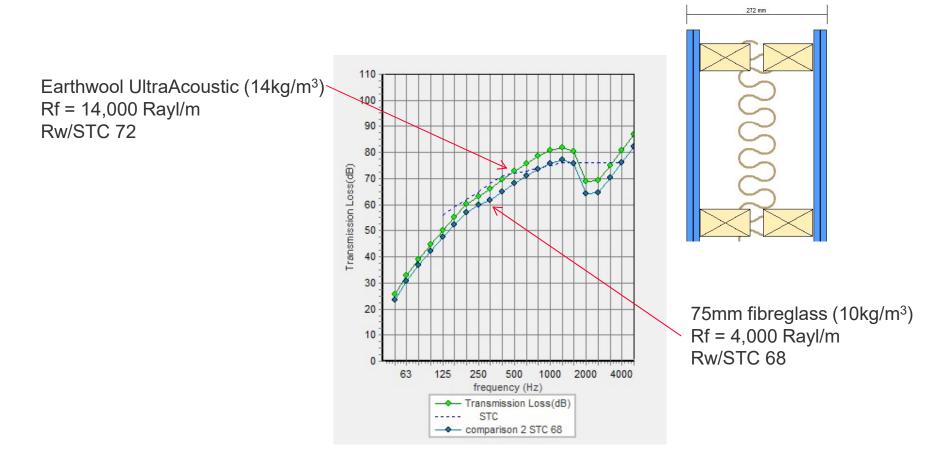
Frames/Connections

 Timber stud Staggered stud Timber stud + resil. rail/bar Steel stud (0.55mm) Steel stud (1.0-1.6 mm) Staggered Steel stud Steel stud + resil. rail Point connections Double timber stud Double steel stud 	 Rubber Isolation Clip timber stud Rubber Isolation Clip Steel stud Acoustic stud Z Girt Double Masonry Butterfly Tie Bonded Insulation None CH Stud
CEILING FLOOR F	ROOF (
Frame type Solid joist(timber or Twinaplate)	■ Z Girt Mason FSN floating floor mount

Frames/Connections

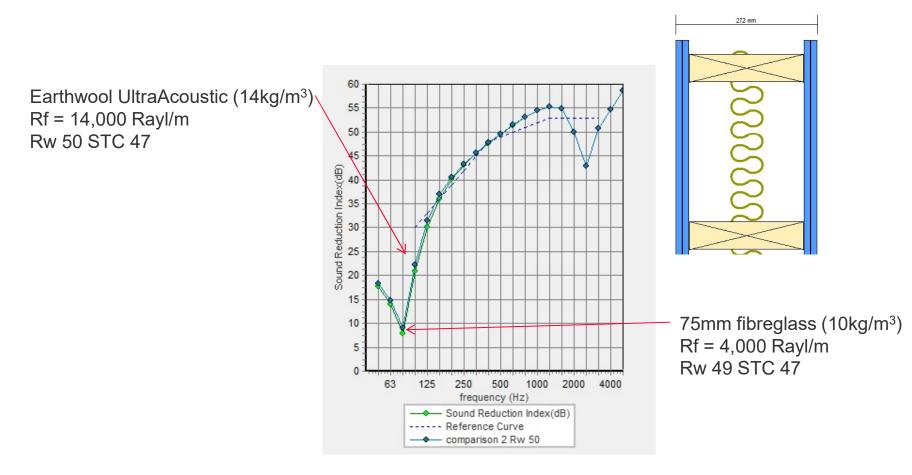
Cavity P	arameters			
Airgap	150 (mm)	Stud spacing 60	0 (mm)	
Cavity A	bsorption			
Autex G	reenstuf R2 wall	pads 🔹	 Thickness 90 (m 	im)

- Air gap = distance between linings
- For single stud walls = stud size
- For double stud walls = 2 x stud size + gap between frames

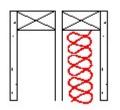


Cavity absorption

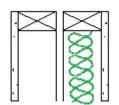
- Choose from drop down list
- For 2 layers set thickness = 2 x thickness of single layer
- Cavity absorption can be less than airgap

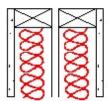

Airgap 100 (mm) Stud spacing 600	(mm) ^{Mass-air-m}	
Cavity Absorption Fibreglass (10kg/m3)	Thickness 60 (mm)	
Earthwool 14kg/m ⁸ 50mm Ultra Acoustic W Earthwool 14kg/m ⁸ 75mm Ultra Acoustic W Earthwool R-2.2 90mm Wall Segment Earthwool R-2.4 90mm Wall Segment Earthwool R-2.6 HD 90mm Wall Segment Earthwool R-2.8 SHD 90mm Wall Segmen Earthwool R-3.2 140mm Wall Segment	ass 14.8 kg/m2 Panel	
Earthwool R-2.7 125mm Ceiling Segment Earthwool R-3.2 150mm Ceiling Segment Earthwool R-3.6 175mm Ceiling Segment Earthwool R-4.1 195mm Ceiling Segment	nsul80.exe'	

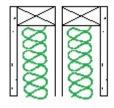
Effect of Absorption



Effect of Absorption



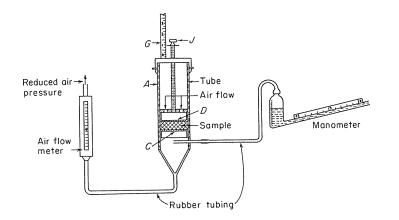

Effect of Flow resistivity


cavity infill 90mm 12kg/m3 (=4000 Rayl/m) STC 56

cavity infill 90mm 16kg/m3 (=8000 Rayl/m) STC 58

cavity infill 2x90mm 12kg/m3 (=4000 Rayl/m) STC 59

cavity infill 2x90mm 16kg/m3 (=8000 Rayl/m) STC 61



Flow Resistivity

Flow Resistivity. For bulk materials the flow resistivity (specific flow resistance per unit thickness of material) is

$$R_1 = \frac{R_f}{l} = \frac{\Delta p}{lu} \qquad \text{mks rayls/m} \tag{10.2}$$

where l = thickness of the material, m

Settings 🧳

- Region (different Countries have different brands, choose Australia to simplify lists)
- Units (inches and lbs for USA)
- Language
- Edge damping (leave on)
- Sewell's correction (leave on)
- Rain Noise (generally set Lab rainfall, Intensity and dBA)

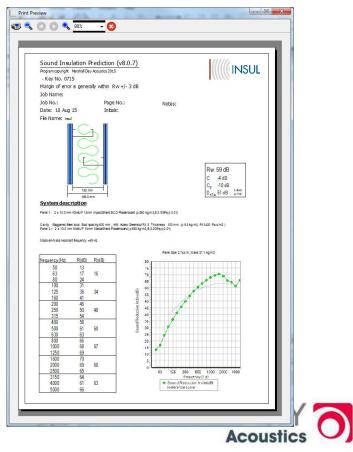
Changing Regional Settings

• V	ïew by region	
I	Australia	
	Belgium	
	Canada Chile	
	China	
- li	France	=
	Germany	
	Hong Kong	
	India	
1	Italy	_
1	Korea	
1	Middle East	
1	The Netherlands	
1	Z New Zealand	1

å

Save/Recall

• You can save a complex construction for QA purposes or for later recall.



Print (or PDF)

• You can preview/print/pdf the main

results (Custom logo possible)

End of part 1

Some Practice

KSW20

WALL LINING: [Side 1] 1 layer of 10mm MastaShield [Side 2] 1 layer of 10mm MastaShield

Stud Size

(mm)

FRAME: Staggered steel studs at maximum 600mm centres [300mm staggered]

Max Height

Non-Load

UDL 0.25 kPa (m)

[10mm MastaShield may be substituted with 10mm WaterShield]

50mm EarthWool 11 kg/m³	65mm Polyester TSB3/ASB3	75mm Polyester 14 kg/m³	Accurtic Derect	

A ANDRESS

	Stud Depth	Stud BMT	Bearing Studs at 600mm	Bearing Studs at 450mm		No Insulation	EarthWool 11 kg/m³	Polyester TSB3/ASB3	Polyester 14 kg/m³	
FRL - / - / -	64mm stud in 92mm track	0.5 0.75 1.15	2.375 2.83 3.51	2.59 3.19 3.87	112	33 (26)	42 (31)	42 (31)	43 (32)	Acoustic Report Day Design 3094-33
	76mm stud in 92mm track	0.55 0.75 1.15	2.61 3.00 3.60	2.80 3.32 4.00	112	33 (26)	42 (31)	42 (31)	43 (32)	Note: Impact Sound Resistant
	92mm stud in 150mm track	0.55 0.75 1.15	2.74 3.19 3.75	2.99 3.48 4.12	170	34 (26)	44 (32)	44 (32)	45 (33)	

Width

(mm)

Non-Load

Acoustics

Rw (Rw + Ctr)

More practice

KSW240

WALL LINING:	[Side 1] 1 layer of 10mm SoundShield
	[Side 2] 1 layer of 10mm SoundShield
FRAME:	Rondo QUIET STUDS® at maximum 600mm centres

More practice

KSW380

 WALL LINING:
 [Side 1] 1 layer of 13mm FireShield plus 1 layer of 13mm MastaShield

 [Side 2] 1 layer of 13mm FireShield plus 1 layer of 13mm MastaShield

 FRAME:
 Double steel studs at maximum 600mm centres with minimum 20mm air gap

 [13mm FireShield can be substituted with 13mm MultiShield or 13mm ImpactShield or 13mm QuadShield]

[13mm MastaShield can be substituted with 13mm WaterShield]

- ["1 x" indicates insulation required in one frame only]
- ["2 x" indicates insulation required in both frames]

501	Stud Size (mm)		Max Heigh UDL 0.25 k		Width (mm)	Acoustic Rw (Rw					1× 51	
FRL – /90/90 60/60/60 rated from both sides Fire Report FAR3210 FAR3230	Stud Depth	Stud BMT	Non-Load Bearing Studs at 600mm	Non-Load Bearing Studs at 450mm		No Insulation	1 x 50mm EarthWool 11 kg/m ³	EarthWool	Polyester	Polyester	1 x 75mm EarthWool 11 kg/m³	Acoustic Report Day Design
	64 148mm cavity	0.5 0.75 1.15	2.72 3.25 3.58	2.93 3.53 3.93	200	51 (42)	61 (48)	64 (51)	58 (48)	61 (51)	62 (50)	3094-48 Note: Impact Sound
	64 200mm cavity	0.5 0.75 1.15	2.72 3.25 3.58	2.93 3.53 3.93	252	52 (44)	62 (50)	65 (53)	59 (50)	62 (53)	63 (52)	Resistant — Discontinuous Construction

Staggered Stud timber

KTW21

 WALL LINING:
 [Side 1] 1 layer of 10mm MastaShield

 [Side 2] 2 layers of 10mm MastaShield

 FRAME:
 Staggered timber studs at maximum 600mm centres [300mm staggered]

 [10mm MastaShield can be substituted with 10mm WaterShield]

FRL - / - / -	Stud Size (mm)		Max Height UDL 0.25 kPa (m)		Width (mm)	Acoustics Rw (Rw + Ctr)				
	Stud Depth	Stud Width	Non-Load Bearing MGP10 Timber Studs at 600mm	Non-Load Bearing MGP10 Timber Studs at 450mm		No Insulation	R1.5 EarthWool	R2.0 EarthWool	R1.5 Polyester	Acoustic Report
	70mm on 90mm plate	35 45	3.33 3.50	3.53 3.73	120	38 (33)	45 (36)	47 (37)	45 (36)	Day Design 3094-45 Note:
	90mm on 120mm plate	35 45	4.11 4.35	4.39 4.67	150	38 (33)	47 (38)	48 (39)	47 (38)	Impact Sound Resistant

Help ?

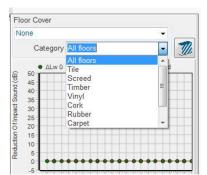
😵 Insul 8	
Hide Back Forward Print	
Contents Insul Help ? Contents ? Insul Help ? Contents ? Insul Help ? Getting started ? Single Panels ? Double Panels ? Triple Panels ? Poors ? Poors ? Poor Covers ? Roof ? Panking ? Leaks * Wang Insul * Sound insulation * Provous Facing * Porous Facing * Porous Facing * Outdoor to Indoor Calculator * Outdoor to Indoor Calculator * Presources	Getting Started Start with a very simple example of predicting the transmission loss of a sheet of gypsum plasterboard. Along the top of the main screen you will see a row of tabs marked Wall, Celling, Floor, Roof, Glazing: WALL V CELING Y FLOOR Y ROOF Y GLAZING These tabs indicate what sort of construction you want to model. For wall and celling the calculation is of the airborne sound reduction, for floor it is the impact sound level, for roof it is the noise from rain, and for Glazing it is the airborne sound reduction of different glazing systems. For now click on the wall tab. In the bottom left hand quarter of the window you will see what looks like a notebook with tabs sticking up. These tabs are labelled panel 1, Frame 1, panel 2, Frame 2, Panel 3 etc. Panel 1 Frame 1 Panel 2 Frame 2 Panel 3 Glazing Porous Material Initially panel 1 is selected and the Material is Gypsum plasterboard. You build up the partition by working across the tabs, setting the properties of each component as you go. For the moment start with <u>Panel 1</u> . One may see what other materials are available by clicking on the little triangle at the right hand side of the material box, a top down list will appear and any of the available materials can be selected by clicking on the list. (note there are noois to help you find the material box, a top down list will appear and any of the available materials can be selected by clicking on the list. (note there are noois to help you find the material torm Plasterboard
	MARSHALL DAY Acoustics

Wall/Ceiling/Floor/Roof

Wall and Ceiling Tabs = airborne Floor tab = impact sound Roof tab = rain noise

Impact Sound

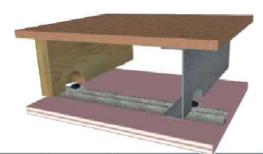
Much the same as for airborne sound
Can choose a floor covering from standard list


Floor Covering

- Floor coverings have a big effect on impact noise (but insignificant effect on airborne noise).
- INSUL has a database of floor coverings
- Organised into different types
- When you select the "Floor" tab the list of floor covers is available.
- The database is different for heavy or masonry floors to timber or light weight floors.

Floor Coverings

Sound Insulation Prediction	Carde A. Jan	
<u>Eile Iools Calculators H</u> elp		
🕨 🖄 🏂 🖨 🗖 🖷 🗍 📢 🔍 🖄	1 🛛 💾 🖿 🔳 📝 🛛	
WALL CEILING FLOOR ROOF GLAZING		INSUL
<u>16.</u>		Accuracy Calculation Settings Evaluation Standard Sound Field © ISO © ASTM © Free
152.0 mm		Ln,w 80 ⁰⁰⁻²⁰⁰⁰ <u> </u>
22 J		Graph Table Header Description
Panel 1 Frame 1 Panel 2 Frame 2 Panel 3 Glazing Porous Material	Floor Cover	(tp) level aurssaud P
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6		
Material Concrete	None Tiles, 8mm on 5mm underlay (example data) Cork, 3-4mm (example data) Timber, 14mm (example data) Vinyl, 2mm (example data) Carpet, 8mm (example data) None Tiles] ABA Soundproof Standard under Ceramic Tiles ABA Soundproof Super System under Ceramic Tiles AcoustaMat (orfWnbuer (form) under Ceramic Tiles Glued AcoustaMat Cork/Rubber (form) under Ceramic Tiles Glued	
Panel Properties Critical Freq 197 Hz Surface Mass 355.7 kg/m2	^C Acoustibond (3mm) under Ceramic Tiles Acousti-Mat LP under Ceramic Tiles in Thinset (1) Acousti-Mat LP under Ceramic Tiles in Thinset (2) Acousti-Mat LP under Quarry Tiles	Normalised Impact Sound Pressure level (dB) Reference curve
Serial No. 0715 Version 8.0.7 Mass 355.7 kg/m2 Panel Size 2.4x2.4 m Regions:	Austrano, este 48 (10mm) under compressed Hardipanel (15	655,493


More Practice

KF230-KF238

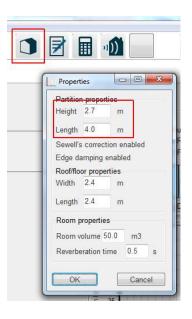
FLOORING:	19mm min particleboard flooring or timber flooring with either carpet,
	tiles or left bare

FRAME: 140mm min deep timber or steel joists or concrete slab, with resilient mounts and furring channel

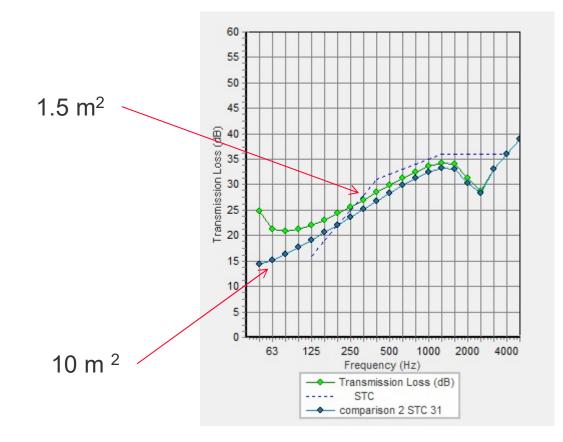
[Use **MultiShield** in place of **FireShield** for external fire rated ceilings] [Carpet requires an underlay and tiles require a fibre cement underlay] [Impact acoustic values determined using insulation]

System	FRL Rated from below only	RISF	Plasterboard Ceiling Lining		Acoustics – Airborne Rw (Rw + Ctr)			Acoustics – Impact Ln,w (Ln,w + Ci)		
	Fire Report FAR 2879				No Insulation	50mm EarthWool 11 kg/m³	65mm Polyester ASB3/TSB3	Carpet and Underlay	Tiled or Left Bare	
KF230	30/30/30	-	1 layer of 13mm FireShield	600	47 (42)	51 (45)	51 (44)	27 (31)	65 (64)	
KF231	60/60/60	30	2 layers of 13mm FireShield	450	51 (46)	56 (50)	55 (49)	26 (30)	63 (62)	
KF232	60/60/60	-	1 layer of 16mm FireShield	450	48 (43)	53 (47)	52 (47)	27 (31)	65 (64)	
KF233	60/60/60	60	1 layer of 13mm FireShield (applied first) plus 1 layer of 16mm FireShield	600	53 (48)	56 (51)	56 (50)	26 (30)	62 (61)	Day Design
KF234	60/60/60	60	2 layers of 16mm FireShield	600	54 (48)	56 (51)	56 (51)	26 (30)	62 (61)	3094-26 3094-50
KF235	90/90/90	60	2 layers of 16mm FireShield	450	54 (48)	56 (51)	56 (51)	26 (30)	62 (61)	
KF236	90/90/90	60	3 layers of 13mm FireShield	450	55 (50)	59 (53)	58 (53)	26 (30)	61 (60)	
						MA	RSł	HAL		AY stics

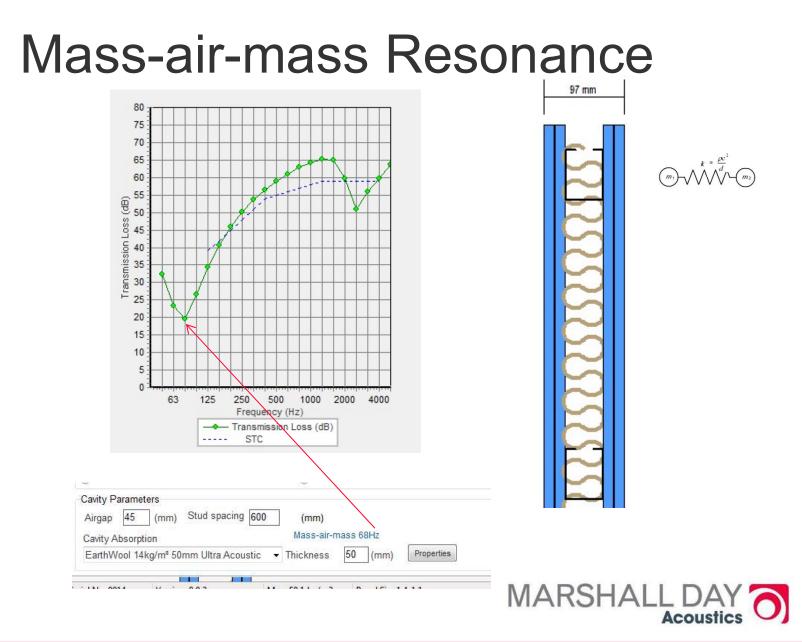
A breather


Low Frequency factors to be aware of

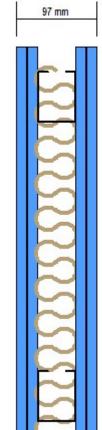
- Partition size (Sewell's correction)
 - Due to poor radiation efficiency (size versus wavwelength)
- Mass-air-mass resonance
- Panel Modes


Panel Size

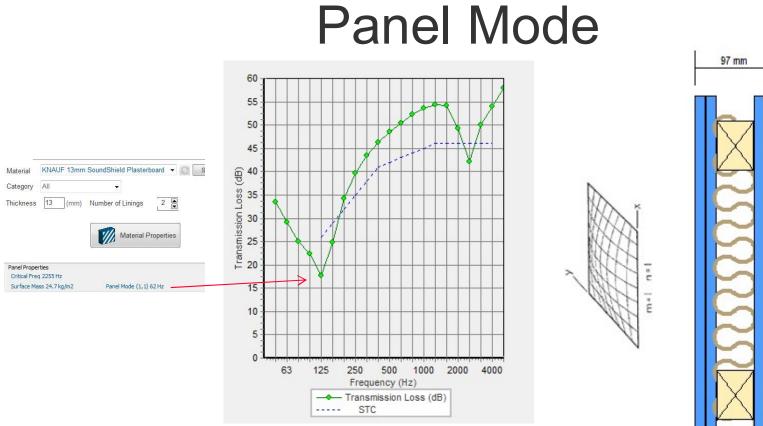
- Standard test area is 10 m²
- For small panels (e.g. windows) the apparent sound insulation is better at low frequencies.

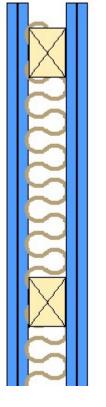


Window (6mm) – effect of size

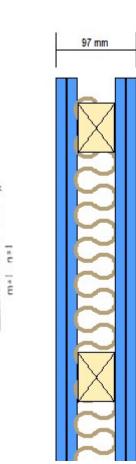


Mass-air-mass Resonance


•Avoid light weight panels


•Avoid small cavity widths

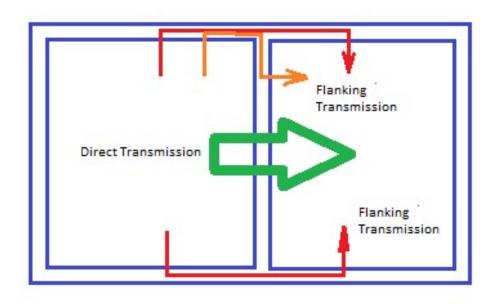
•Avoid empty cavities



Panel Mode

•Avoid close stud spacings (less than 600mm)

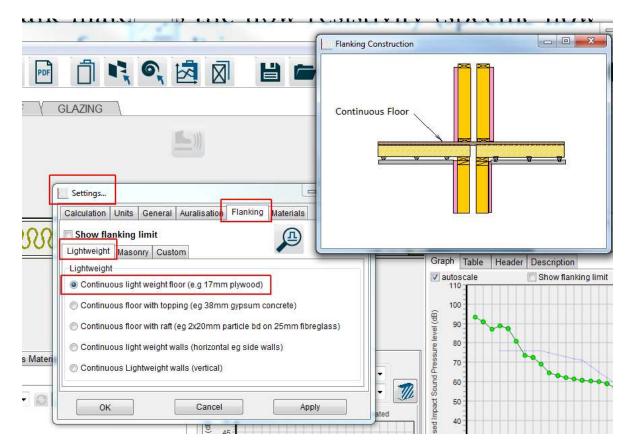
•Avoid stiff panels (thick panels)



Flanking Transmission

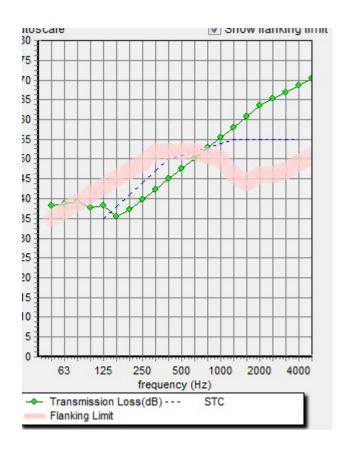
- INSUL can predict very high performance (estimated Lab performance)
- which will not be achieved on site,
- sound will be transmitted around the partition by various flanking paths

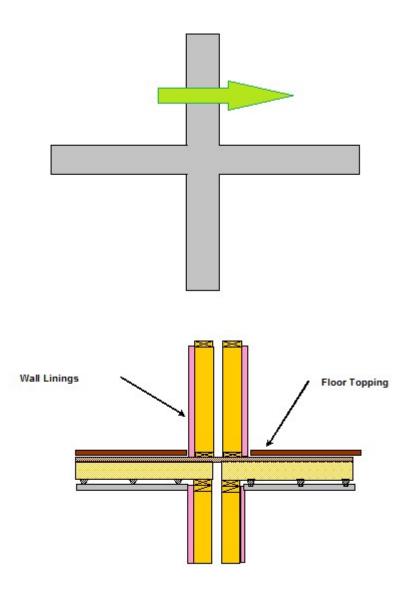
The picture above shows a few of the possible flanking paths (in red). With 2 rectangular boxes joined together on one face there are 12 possible flanking paths that will contribute



INSUL Flanking

- Select the approximate surrounding construction and indicate the likely magnitude of flanking transmission
- O Especially important when high performance partitions (≥STC/Rw 55) are to be used


Flanking limit

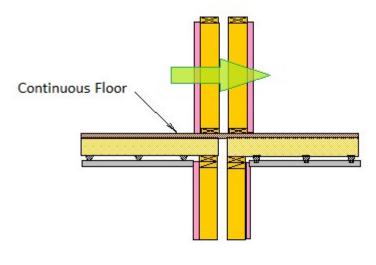


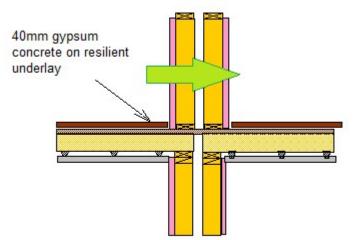
- INSUL does not directly calculate the flanking transmission within a building.
- Visual reminder of the level of flanking transmission to alert the user to flanking transmission
- A fuzzy pink line is shown on the graph, to indicate approximately the likely flanking transmission.

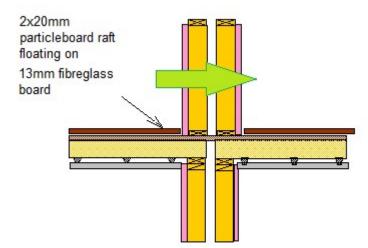
- Note that the degree of flanking transmission is dependent on the type of building elements surrounding the partition.
- The user can select a flanking construction in the settings form.
- The flanking will be different depending on the weight of the construction and any vibration isolation in the structure.

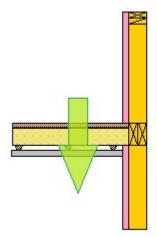
Masonry flanking structure

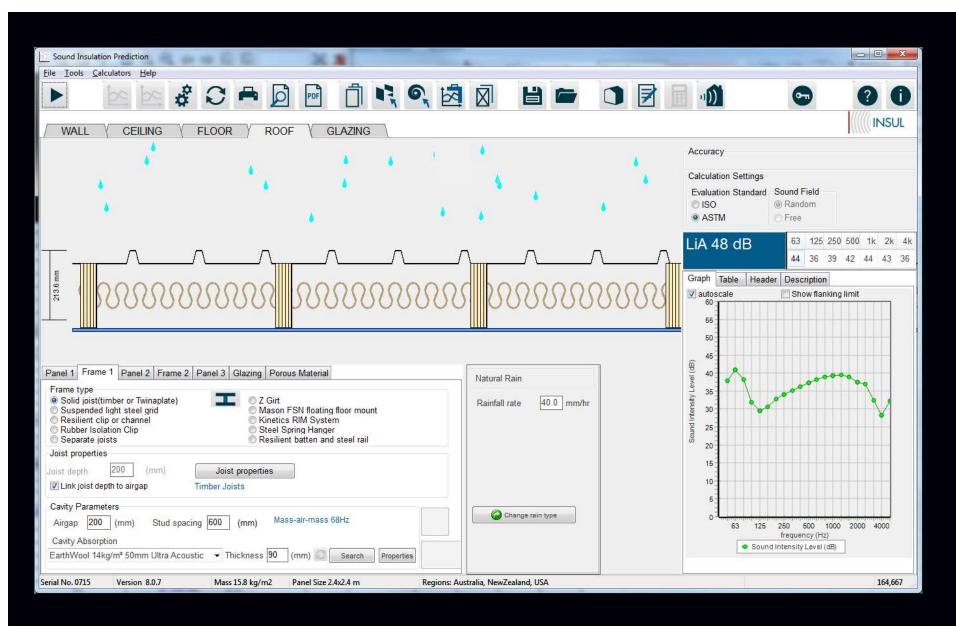
 The European Standard EN 12354-1:2000 provides a simple method for estimating flanking transmission in masonry or heavy construction.


 INSUL incorporates a few simple results based on masonry construction of various thickness and junction details




Lightweight flanking structures


- For lightweight construction it is not practical at this time to calculate the flanking transmission, and
- So experimental results have been used to predict the flanking for some <u>common</u> <u>constructions</u>.


End of Part 2

Prediction of Rain Noise

- Predictions for ISO 140-18 simulated rain or natural rainfall
- Predictions for single roof panels or roof panels with a ceiling beneath
- Predictions of Lp, Li and Lw, with results given in third octave bands, octave bands, dBA, NC and PNC

• Method:

- ISO1 40-18:Laboratory measurement of sound generated by rainfall on building elements (Caution)
- Model for natural rainfall to simulate levels of rain noise under real conditions:
 - Based on original research carried out by MDA
 - It is very useful for countries where rain fall is high and buildings are often constructed from light weight materials
 - Original research was prompted by problems in NZ classrooms where it was impossible to hear a teacher's voice at times of high rainfall

Calculation of Outdoor to Indoor Transmission

- The Outdoor to Indoor calculator is a simple tool for estimating the internal noise levels for a given external noise level at the building façade
- Takes into account:
 - STL of the building facade elements
 - Size of room
 - Room acoustical characteristics

- Calculations are based on EN 12354/3: Estimation of acoustic performance in buildings from the performance of elements. Airborne sound insulation against outdoor sound.
- Input/Output
 - Several standard outdoor noise spectra are available (e.g. traffic noise, aircraft noise, entertainment noise, voice),Or
 - User can enter the frequency spectrum of the sound level
 - STL data can come from INSUL or be manually entered from other data
 - User enter area building element, room volume, MARSHALL DAY of Acoustics

Input/Output (cont)

- User enters:
 - area building element,
 - room volume,
 - reverberation time
- Up to 5 elements can be combined in one calculation
- The calculation can be made in octave or 1/3 octave bands
- Contribution of each path is shown numerically and graphically for easy visual ranking of element performance

• Input/Output (cont)

ile <u>E</u> dit <u>T</u> ools	- .	-							
C 🖬 🖬 🗍 🗍		2	o 🗖						
ītle					6	0 1			
				Lp Inci	dent 🛱 5	0			
Comment				★ Lp Eler		0			
					p 3	0			
					nos 2	0			
					1	0			
					8	63 125	250	500 1k	2k 4k
						05 125		ency (Hz)	21 71
Exterior Sound Pressure Level		63	125	250	500	1k	2k	4k	Overall d
Incident sound level (freefield)		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Standard Sources			1.7.5.6.5	(costa	1.379.007	1.5875	10000		1,542,673
Path	Element 4	4 VEleme	ent 5						
_/Element 1 \Element 2 \Element 3 \E	Element 4	4 (Eleme		10.0	m2				
/Element 1\Element 2\Element 3\E Description			Area	141 1934 1	LA	0	0	0	
/Element 1 \{Element 2 \{Element 3 \{E Description -Sound Transmission Loss	e	0	Area 0	0	0	0	0	0	
/Element 1\Element 2\Element 3\E Description -Sound Transmission Loss -Facade Shape Level diff.	(0	Area 0 0	0	0	0	0	0	
/Element 1 \Element 2 \Element 3 \E Description -Sound Transmission Loss -Facade Shape Level diff. +10 Log(A)		0 0 10.0	Area 0 0 10.0	0 0 10.0	0 0 10.0	0	0	0	
/Element 1 VElement 2 VElement 3 VE Description -Sound Transmission Loss -Facade Shape Level diff. +10 Log(A) D2m,nT		0	Area 0 0	0	0	0	0	0	0.0
/Element 1 VElement 2 VElement 3 VE Description -Sound Transmission Loss -Facade Shape Level diff. +10 Log(A) D2m,nT Receiving Room		0 0 10.0	Area 0 0 10.0	0 0 10.0	0 0 10.0	0	0	0	0.0
/Element 1 \ <u>Element 2 \Element 3 \E</u> Description -Sound Transmission Loss -Facade Shape Level diff. +10 Log(A) D2m,nT		0 0 10.0	Area 0 0 10.0	0 0 10.0	0 0 10.0	0	0	0	0.0
/Element 1 \Element 2 \Element 3 \Element 3 \Element 3 \Element 2 \Element 3		0 0 10.0	Area 0 0 10.0	0 0 10.0	0 0 10.0	0	0	0	0.0
/Element 1 \(Element 2 \(Element 3 \) (E Description -Sound Transmission Loss -Facade Shape Level diff. +10 Log(A) D2m,nT Receiving Room Volume 50.0 m3 -10 Log(V)+14		0 0 10.0 0.0	Area 0 0 10.0 0.0	0 0 10.0 0.0	0 0 10.0 0.0	0 10.0 0.0	0 10.0 0.0	0 10.0 0.0	0.0
/Element 1 \Element 2 \Element 3 \Element 3 \Element 3 \Element 2 \Element 3		0 0 10.0 0.0	Area 0 0 10.0 0.0 -3	0 0 10.0 0.0	0 0 10.0 0.0	-3	-3	0 10.0 0.0 -3	0.0
/Element 1 \Element 2 \Element 3 \Element 3 \Element 3 \Element 2 \Element 3		0 0 10.0 0.0 3 0.5 3.0	Area 0 0 10.0 0.0 -3 0.5	0 0 10.0 0.0 -3 0.5	0 0 10.0 0.0 -3 0.5	-3 0.5	-3 0.5	-3 0.5	0.0

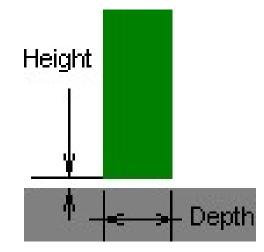
Trapezoidal Profiled Metal Panels

- INSUL has improved the prediction of profiled metal panels
- Complex constructions using corrugated or profiled panels
- Typically used for commercial and industrial buildings
- New routines based on the work of Lam and Windle in England allow more accurate prediction of particular profiles

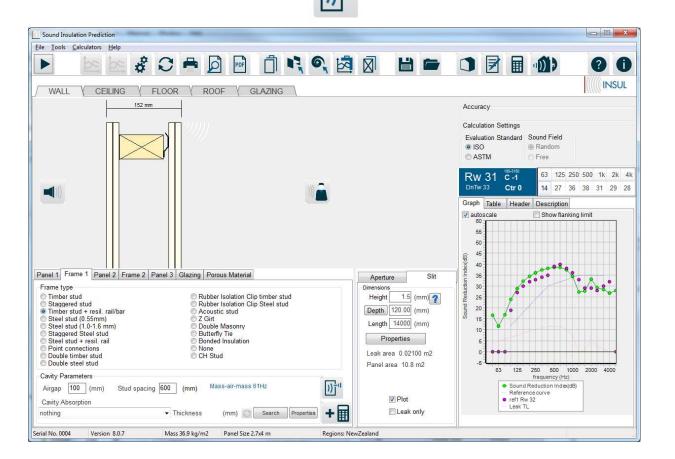
- Drop down menu of standard 'proprietary' profiles or user generated profile
- Constructions using profiled panels in conjunction with flat sheets and in cavity constructions can be predicted
- This can be extended by adding an airgap and a second lining, with or without an acoustic blanket in the cavity

Porous Blankets And Facings

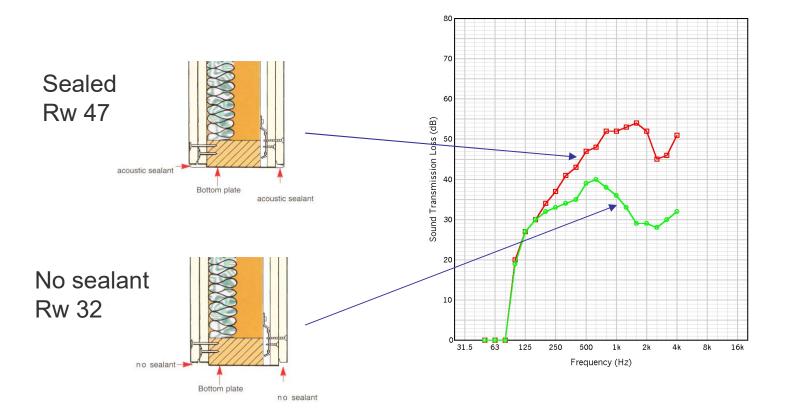
- INSUL can now predict the sound transmission loss of porous blankets either alone or as a facing for a construction
- Porous blankets such as fibreglass, mineral wool or polyester
- A porous facing can be added to a construction.
 - Typical of an acoustic panel system for machine enclosures, or metal roofs incorporating a perforated pan


Sound Insulation Prediction Marshall Day Acoustics File name: J:\JOBS\1997\97007\Reference Comparisons\Version 7 and 8\PRDC stuff\PL	.y-300joists-ST001-2x13Noiseline.ixl
<u>F</u> ile <u>I</u> ools <u>C</u> alculators <u>H</u> elp	
WALL CEILING FLOOR ROOF GLAZING	INSUL
	Accuracy
C	Calculation Settings
\sim	Evaluation Standard Sound Field
	ISO
\sim	Rw 9 100-3150 C 0 63 125 250 500 1k 2k 4k DnTw 11 Ctr -2 0 0 3 7 10 11 12
	Graph Table Header Description
\sim	autoscale Show flanking limit
\sim	55
\sim	50
\sim	45
Panel 1 Frame 1 Panel 2 Frame 2 Panel 3 Glazing Porous Material	∰ 40
Porous Material properties	sso 25 35 Ciss 30
	-
Porous material EarthWool 14kg/m ^e 75mm Ultra Acoustic	転 25
Thickness 75 mm Flow Resistivity 12400 Pa.s/m2	20
Density 14 (kg/m3)	15
Edit properties	10
Add to overall construction	
	63 125 250 500 1000 2000 4000 frequency (Hz)
+ 🖬	Transmission Loss (dB) — Reference Curve
• 🖽	
Serial No. 0715 Version 8.0.7 Mass 1.1 kg/m2 Panel Size 2.7x4 m Regions: Australia, NewZealand, USA	470,366

Prediction Of Leak Effects


- Leaks panels, walls, ceilings, double glazing
 - Aperture leak models circular hole in a building element (middle, edge, corner)
 - Slit leak models long narrow leak through building element e.g. gap under door, gap along side of partition (middle or edge)
 - Gomperts or Mechel calculation routines
 MARSHALL DA

Leak Effect Prediction



Effect of leakage

Effect of Leakage

Auralisation

- The user can now listen to the predicted sound reduction.
- Using, for instance, headphones plugged into the computer sound output, the user can click on a simulation of sound on the source side of the wall, then on the receiver side of the wall.

- Note: the user should be careful that the accuracy of the simulation will depend on the frequency response of the reproduction system and the background noise level:
 - So demonstrating differences in low frequency performance with headphones may be quite ineffective
 - Likewise, trying to listen to the effect of very high performance walls may be impossible if the background noise is not very low

The Databases

- Glazing materials
- Profile
- Core materials (for elastic core materials)

Database maintenance

- Each database has two parts
- Customers database (unique to user, not updated by new releases)
- INSUL database (not to be edited by user)
- Custom database materials show as blue text
- INSUL database materials (> 1000) show as black

Materials database

• Three key parameters

- Density (kg/m³)
- Stiffness (Modulus of Elasticity = Young's Modulus GPa)
- Damping (dimensionless)

 Secondary parameters (name, region, category, type, colour, texture)

Absorber database

• Two key parameters

- Density (kg/m³)
- Flow resistivity (Pas/m² = Rayl/m) see ISO

Secondary parameters (name, region, category, type, colour)

Database Features

User can filter the databases by

Region

Panel 1 Frame 1 Panel 2 Frame 2 Panel 3 Glazing Porous Material

Search

Materials List E

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Nuralite Warm Roof (12mm ply sarking) Nuralite Warm Roof (18mm ply sarking)

Category Thickness Category Category Category Thickness Category Cat

Ply-Cork-Ply

Material

- Category (plasterboard, masonry, wood, fibre cement etc etc)
- User can search by text string on Description (in example below we have searched on "ply")

☑ Australia	1.
Belgium	
Chile	
China China	
France	
Germany	
Hong Kong	
India Italy	
Korea	
Middle East	
The Netherlands	
New Zealand	
Poland	-

Panel 1	Frame 1	Panel 2	Frame 2	Panel 3
Layer 1	Layer 2	Layer 3	Layer 4	Layer 5
Material	10mm	Plasterbo	pard	
Category	All		-	1
Thicknes	Masor Wood Fibre o Glazin	nry cement	E .	Linings 25

Database selection

					ſ	Search StringZ
						Enter text Knauf
Panel 1	Frame 1	Panel 2	Frame 2	Panel 3	Glazing	OK Cancel
Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6	
Material	KNAU	F 10mm I	MastaShiel	ld Plasteri	board 🔻	Search 2 3
Category	All]		
Thicknes	ss 10] (mm)	Number of	Linings	1	

Editing the Custom Databases

- User can enter new materials
- Must know density, Modulus and damping
- Must enter a thickness
- Can choose a material type (usually isotropic)
- Can enter description, colour, texture

Entering material parameters

D 🖸 🕂 🔁 🕉						
Iaterials Profile Glazing Floor Cover Porous Material						
lame	Name	10mm Pla	sterboar	d I	[8 @
10mm Plasterboard	Туре	Isotropic		2 11	•	
13mm Plasterboard		Side A Co	re Side	e B Profile		
5mm Plasterboard		Thicknes	s 10.0	(mm)		в
Double Tees (65mm topping)		1.211.303497555	ty 710.0	(kg/m3)		
KS 1150FR gr. 100		Categor	y Other	÷		
				<< Hide advanced		
				Youngs Modulus	2.000	(GPa)
				fc.m 3	27439 (Hz.kg	g/m2)
				Damping		
				Orthotropic Ratio	22.22	
				Poissons Ratio).30	
		Colour	2			
				Texture]	
		Show R			2	
		Show K	gions			
Count: 5						

Entering material parameters

INSUL Materials Editor	10 1	2 M		01	×
<u>File Edit T</u> ools <u>H</u> elp					
0000					
Materials Profile Glazing Floor Cover Porous Material					
User list Insul					
Name	Name	Fibreglass (10kg/m3	3)		
Fibreglass (10kg/m3)					
Fibreglass (10kg/m3)		Thickness	60.0	(mm)	
Fibreglass (10kg/m3)		Density		(kg/m3)	
Fibreglass (22kg/m3)		Flow Resistivity	1. SN	(Pa.s/m2)	
Fibreglass (22kg/m3)		Flow Resistivity	4000	(Pa.s/m2)	
		-			
		Colour			
			5		
		Show Regions			
* 🔲 🔹 🕨					
Count: 5					
				ОК	Cancel
	-				

Material Types

- Isotropic (simple, same properties in each direction) Most materials = isotropic
- Orthotropic (stiffer in one direction than another, eg corrugated steel roofing)
 - Sub category Trapezoidal
 - Sub categroy Corrugated
- Elastic Core (soft core between dense sheets, eg insulated panels (PIR etc))
- Composite Steel Floor (concrete floor cast onto steel decking)
- Inelastic core (e.g. light weight concrete cast into steel formwork)

Entering a new material Required parameters

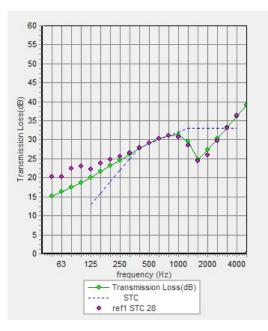
• Density (easy to obtain)

• Stiffness (best to obtain from acoustic test by locating critical frequency dip)

 Damping (best to estimate from acoustic test by locating critical frequency dip but choose η= 0.01 if no other info)

Entering parameters

Thickness	10.0	(mm)		
Density	710.0	(kg/m3)		
Category	Other	+		
	<	< Hide advanced		
	4	oungs Modulus	2.000	(GPa)
		fc.m	27439 (Hz	.kg/m2)
		Damping	0.009	
	(Orthotropic Ratio	1.00	
		Poissons Ratio	0.30	
Colour				
		Texture		


Modulus and damping from acoustic test

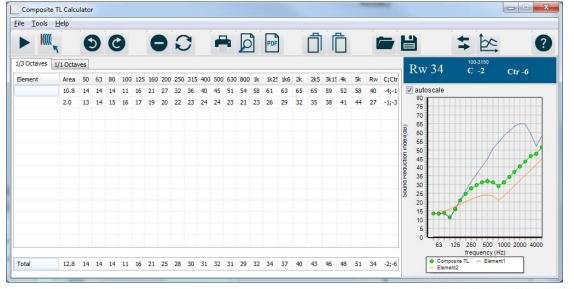
19mm gypsum plasterboard

Best fit :

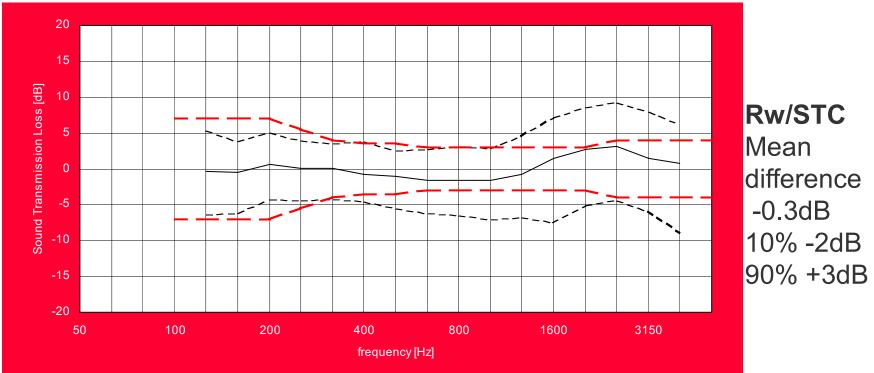
E = 3.95 GPa (adjust to get frequency right) $\eta = 0.011 \text{ (adjust to get depth of dip right)}$

Name 19 (Gib Fyreline			
Materialty Regions:Nev	e = Isotrop Zealand,	с		
Side A				
Thickness	19	(mm)	Mass 16	5.5 kg/m2 😕
Density	870	(kg/m	3)	
Category	Gypsum			
	Youngs Modu	ılus 3.	95	(GPa)
	fc.m 2	6484 (H:	z.kg/m2)	
	Dam	ping 0.	011	
Colour	Text	ure		0
	1000	are		

End of Part 3


Some Utilities

- Composite calculation
- Comparison between constructions
- Copying and Pasting
 - Results
 - Graph
 - Construction drawing


Composite Transmission Loss

- Single Stud partition (Rw 40)
- Single door (Rw 27)
- O Composite Rw 34

Accuracy (No substitute for Lab data)

Measured less predicted for Californian data for stud walls (- - - 10%) and 90% limits, —median error, - - - estimated reproducibility between labs ISO 140)

Keeping Up to date

- Check for new releases (irregular but free). Bug fixes, small improvements, more materials
- Download and install to be current

 New Versions come out every 18 months to 2 years (paid for). Recommended

Updating

MAR	SHALL	
Ins	U Versi	ion 8.0.7
Licenced to kev version Serial No.		
	ase is 8.0.07	Check for Updates pdates
Berdoulay, H. I	Sharp, H. Trethowen, Forschner,H. Chung, zianel, B.Van de Vel	, M.
200010, 0. 11		
	right Marshall Day A	Acoustics 2015

New version

bout	23	File folder	
		File folder	
MADSUA		File folder	
MANJIA	LL DAY O	. File folder	
	Acoustics	File folder	
		File folder	
Insul		File folder	
mou	Version 7.0.13	File folder	
		File folder	
(Rich Text Format	1 K
Licenced to key version = Insul	8.0	Setup Information	1 K
Serial No. 0715	Insul	Contraction of the second	X
Latest Release is	A new version is available. P	lease contact your distribu	tor.
Automatically ch	ec		ОК
Program copyright Ma	ars	Application	10,184 K
🗸 ок 🛛 🙍	Contact ? <u>H</u> elp	Application	10,186 KI
		Application	10,188 K

Updating the key

key version = 8	3.0
Serial No. 0715	
Save Key Iı	nformation to file
Undaha	Key from file

THE END

